

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours								
Course Title	MODERN PHYSICS AND NUCLEAR PHYSICS								
Type of Course	Minor (SET II: MATERIALS PHYSICS)								
Semester	Ш								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	 Foundational under mechanics and electric Proficiency in alg 	rstanding of romagnetism ebra, calculu	classical phy s and trigono	sics, particula metry.	rly in				
Course Summary	This course explores the structure and b theoretical discussi investigate electrom atomic structure, nuc	s the dual na ehavior of a ions and p agnetic wav clear compos	ture of partic atomic and r practical app res, particle-v sition, and nu	eles and wave nuclear system plications, st wave duality clear transform	s, as well as ns. Through udents will phenomena, mations.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the duality of particles and waves, Describe experimental evidence supporting the wave-particle duality, including the photoelectric effect and Compton effect.	U	С	Instructor-create d exams / Quiz
CO2	Define pair production and its	U, Ap	Р	Seminar
	significance in quantum			Presentation /

	mechanics, Understand the concept of matter waves proposed by Louis de Broglie.			Group Tutorial Work					
CO3	Explain the structure of the atom according to the nuclear model, Understand Energy Levels and Spectra	Ар	Р	Practical Assignment / Observation of Practical Skills					
CO4	Investigate Nuclear Structure Understand stable nuclei, binding energy, and models such as the liquid drop model and shell model	U	С	Instructor-create d exams / Home Assignments					
CO5	Understand radioactive decay processes and their implications for nuclear stability,	Ар	Р	One Minute Reflection Writing assignments					
CO6	Analyse nuclear reactions, including fission and fusion, and their relevance in energy production and stellar evolution.	Ap	Р	Writing assignments /Viva Voce					
* - Re # - Fae Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Detailed Syllabus:

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)
Ι		Particle properties of waves & Wave properties of particles	12	15
	1	Electromagnetic Waves, Black body Radiation	3	
	2	Photoelectric Effect	2	
	3	Compton Effect	2	
	4	Pair Production	3	
	5.	De Broglie Waves	2	
	Sectio	ons from References: 2.1, 2.2, 2.3, 2.7, 2.8, 3.1, Book 1		
II		Atomic Structure	10	22
	6	The Nuclear Atom	2	
	7	Electron Orbits	2	

CU - FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

8	Atomic Spectra	2	
9	The Bohr Atom	2	
10	Energy Levels and Spectra	2	
Sectio	ons from References:4.1, 4.2, 4.3, 4.4, 4.5, Book 1		
	Nuclear Structure	13	20
11	Nuclear composition	2	
12	Nuclear properties	2	
13	Stable nuclei	2	
14	Binding energy	2	
15	Liquid drop model, Shell model	2	
16	Magic numbers	1	
17	Meson theory of nuclear forces.	2	
Sectio	ons from References:11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, Book 1		
	Nuclear Transformations	10	13
18	Radioactive decay, radioactivity and the Earth	1	
19	Half-life, Radiometric dating	2	
20	2		
		3	
21	Nuclear reactions, Nuclear fission	3	
21 22	Nuclear reactions, Nuclear fission Nuclear fusion in stars	3 3 1	
21 22 Section 12.5,	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1	3	
21 22 Section 12.5,	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS	3 3 1 30	
21 22 Section 12.5,	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS uct any 6 experiments from the given list and 1 additional experiment,	3 3 1 30	
21 22 Section 12.5, Condition	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS uct any 6 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 7 th	3 3 1 30	
21 22 Section 12.5, Condition	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS uct any 6 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 7 th iment may also be selected from the given list. Other experiments	3 3 1 30	
21 22 Section 12.5, Conducted decide exper listed	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS uct any 6 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 7 th iment may also be selected from the given list. Other experiments here may be used as demonstrations of the concepts taught in the	3 3 1 30	
21 22 Section 12.5, Conduction decide experi- listed course	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS uct any 6 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 7 th iment may also be selected from the given list. Other experiments here may be used as demonstrations of the concepts taught in the e.	3 3 1 30	
21 22 Section 12.5, Condition decide experi listed course Neces	Nuclear reactions, Nuclear fission Nuclear fusion in stars ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1 PRACTICALS uct any 6 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 7 th iment may also be selected from the given list. Other experiments here may be used as demonstrations of the concepts taught in the e. ssary theory of experiments can be given as Assignment/ Seminar.	3 3 1 30	
	9 10 Section 11 12 13 14 15 16 17 Section 18 19 20	9 The Bohr Atom 10 Energy Levels and Spectra Sections from References:4.1, 4.2, 4.3, 4.4, 4.5, Book 1 Nuclear Structure 11 Nuclear composition 12 Nuclear properties 13 Stable nuclei 14 Binding energy 15 Liquid drop model, Shell model 16 Magic numbers 17 Meson theory of nuclear forces. Sections from References:11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, Book 1 Nuclear Transformations 18 Radioactive decay, radioactivity and the Earth 19 Half-life, Radiometric dating	9 The Bohr Atom 2 10 Energy Levels and Spectra 2 Sections from References:4.1, 4.2, 4.3, 4.4, 4.5, Book 1 13 Nuclear Structure 11 Nuclear composition 2 12 Nuclear properties 2 13 Stable nuclei 2 14 Binding energy 2 15 Liquid drop model, Shell model 2 16 Magic numbers 1 17 Meson theory of nuclear forces. 2 Sections from References:11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, Book 1 1 18 Radioactive decay, radioactivity and the Earth 1 19 Half-life, Radiometric dating 2 20 Alpha decay. Beta decay. Gamma decay. 3

	• Observe the turn-on voltage, V_0 of LEDs and calculate the		
	value of <i>h</i> . Use at least 4 different colors of LED (with transparent casing)		
	• Plot $\frac{1}{\lambda} - V_0$ graph using Python, fit a straight line to get the		
	slope and estimate the value of h .		
	• Calculate the %error.		
	• Programmable voltage source of ExpEYES may be used to		
2	Continuous and line spectra. Determination of the wavelengths		
2	and photon energy.		
	 Eamiliarize the initial adjustments and measurements in the 		
	spectrometer.		
	• Mount the grating at normal incidence on the spectrometer.		
	• Determine the wavelengths of the sodium vapor lamp and		
	 Calculate the associated photon energy. Determine the approximate range of the wavelengths of the 		
	• Determine the approximate range of the wavelengths of the continuous spectrum of incandescent/white LED lamp or any		
	one coloured LED and calculate the associated photon energy.		
	• The readings of the first order spectrum will be enough.		
2	Number of lines/m of the grating can be given.		
3	energy		
	chergy.		
	• Determine wavelength of any four prominent lines and		
	spectrometer with grating at normal incidence.		
	• The readings of the first order spectrum will be enough.		
	Number of lines/m of the grating may be given.		
4	Hydrogen spectrum - Determination of wavelengths and		
	calculation of the Kydderg's constant.		
	• Determine the wavelengths and photon energy in eV of the		
	prominent lines of the Balmer series of the Hydrogen		
	incidence.		
	• Calculate the Rydberg's constant and estimate the % error.		
	• The readings of the first order spectrum will be enough.		
5	Number of lines/m of the grating may be given.		
5	wave rackets - Analysis of deats in sound.		
	• The experiment is intended to understand the concept of wave		
	packet, phase and group velocities. Generate sounds wayes of two pear frequencies using		
	smartphone/ExpEYES/Function generator and the		
	superimposed wave can be recorded and analysed using		
	smartphone/ExpEYES/CRO		
	• Change the separation between the frequencies and compare the results with the theoretical values		
	 https://experiments/sound/beats.html 		

	Multi Tone generator and Audio scope tools of Phyphox may	
-	be used <u>https://phyphox.org/experiment/tone-generator/</u>	
6	7. Analysis of Hydrogen spectra using the Tracker Video Analysis tool	
7	 Calibrate the video of the Hydrogen spectra in the Tracker tool using two laser wavelengths/lines of mercury spectra. Plot the intensity profile, find the prominent wavelengths of the Balmer series and calculate the Rydberg's constant. Estimate the %error. Pre recorded video of the Hydrogen spectra can be used. <u>https://physlets.org/tracker/</u>. <u>https://www.youtube.com/watch?v=UCCPkJpUQEw</u> Black body spectrum of Sun -Estimation of surface temperature using the Tracker Video Analysis tool. Calibrate the video of the solar spectra in the Tracker tool using two laser wavelengths/lines of mercury spectra. 	
	• Plot wavelength vs intensity, get λ_{max} and using Wein's law calculate the surface temperature.	
	• Pre recorded video of the solar spectra can be used.	
8	Verification of Wein's displacement law and Stefan's law using incandescent bulb.	
	 Calibrate the video of the spectra of the incandescent bulb in the Tracker tool using two laser wavelengths/lines of mercury spectra. Plot wavelength vs intensity and note λ_{max}. 	
	 Repeat the experiment by increasing the operating voltage of the incandescent bulb(hence increasing the temperature of the source) From the plots, verify the Wein's displacement law and Stefan's law. 	
9	Study the specific rotation of the sugar solution using a	
	polarimeter.	
	 Determine the specific rotation corresponding to different concentrations of the sugar dissolved in water. Draw a graph between rotation and concentrations and verify the linear relationship. 	
10	Verification of Malus's law using polarizer, analyzer and photo	
	detector	
	 Unpolarized light is allowed to pass through a polarizer and is observed through an analyzer. Vary the angle between the axes of polarizer and analyzer and measure the intensity of the light (current output of the photodetector). 	
	• Plot $\theta - I$ and $\cos^2 \theta - I$ graphs and verify the Malus's law.	

	 A flat computer monitor (or LCD TV screen) in plain white color can be used as the source of linear polarized light. The ambient light sensor of the smartphone and the orientation sensor of the smartphone can be used to measure the illuminance and the angles respectively. A small piece of polarizer (a square of about 1 cm side) from an old calculator's display was placed over the ambient light sensor as analyser. 	
	• <u>https://arx1v.org/pdf/1607.02659</u>	
	Brewster's law experiment, determination of angle of polarisation and refractive index.	
	 Experimental arrangement- Sodium vapour lamp, Spectrometer, Polarizer (Graduated on 360° rotating) coupled in front of the spectrometer telescope, prism or glass plate. Get the angle of incidence corresponding to the minimum intensity of light and hence calculate the refractive index of the material. https://www.youtube.com/watch?v=f2A8sM1xhbQ 	
1	2 Mapping of the magnetic field lines of a bar magnet.	
	 Fix a paper on a drawing board kept on a table and place the bar magnet at the center along the magnetic meridian. Using a small compass needle, map the magnetic field lines of the magnet placed with north pole pointing south Mark the null points (where the horizontal component of Earth's magnetic field, Bh cancels the field due to magnet) along the axial/equatorial line and measure the distance, 2d, between them. Calculate the moment of the magnet m = 4π (d²-l²)² B 	
	$\mu_0 = 2d - b_h$	
1	 Circular coil- Verification of Biot Savart's law and determination of Bh. Move a compass through a platform along the axis of the coil carrying a study current. Note the deflection of the needle and plot magnetic flux density (B = B_htanθ) as a function of distance. Optional: Smartphone magnetometer may be used to measure the strength of the magnetic field along the axial line and plot the data. <u>https://phyphox.org/experiment/magnetic-field/</u> Experiment 62 of Book 2 By varying current and (or) distance of the compass box along the axial line of the coil, note the deflection and hence determine the value of Bh. 	
	4 Calibrate the ammeter using potentiometer	
	• Standardize the potentiometer using a Danial cell or any other standard voltage source.	

	• Determine the current for at least 8 trials and draw the calibration graph.	
15	Parallel plate capacitor. (a) verify the relationship between capacitance and the area of the plates (b) determination of dielectric constant of thin dielectric sheet. • Form a parallel plate capacitor with dielectric material filled	
	 Form a parallel plate capacitor with detective material miled between the plates. Multimeter/ ExpEYES can be used to measure the capacitance. (For a significantly measurable value of the capacitance, use plates of dimension 10cmx10cm, or greater) Change the area of the capacitor plates and verify the relationship of the capacitance on the area (Using the same set of plates, the area can be changed by varying the overlapping region of the plates) 	
	 By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material, determine the dielectric constant of the given material/liquid. <u>http://www.indosawedu.com/dielectric-constant.php</u> 	
	https://www.youtube.com/watch?app=desktop&v=sx0tzAj-Dm4 https://www.youtube.com/watch?v=lKfIkUuFT-U	

Books and References:

- 1. Concepts of Modern Physics, Arthur Beiser 6th Edition (Book 1)
- 2. Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 2)
- 3. Modern Physics for Scientists and Engineers" by John Morrison
- 4. Modern Physics by Raymond A. Serway
- 5. Introduction to Nuclear and Particle Physics V K Mittal, R C Verma and S C Gupta
- 6. Introductory Nuclear Physics by Kenneth S. Krane
- 7. Principles of Nuclear Physics by A. B. Migdal
- 8. <u>https://phyphox.org/</u>
- 9. https://physlets.org/tracker/
- 10. https://expeyes.in/

				_	-		_		_	_	_	_	
	PS	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO	PC
	01	2	3		05	6						6	7
CO 1	3	2	2	1	1	0	3	2	1	1	2	0	0
CO 2	2	3	2	1	1	1	3	3	1	0	2	0	0
CO 3	1	2	3	3	1	1	2	2	2	2	2	0	0

Mapping of COs with PSOs and POs :

CU - FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

CO 4	1	1	1	3	2	2	2	1	2	2	3	0	0
CO 5	1	2	1	1	3	1	2	2	2	2	3	0	0
CO 6	1	2	1	1	3	2	2	1	2	2	3	0	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/	Assignment	Practical Skill	End Semester
	Practical Exam	/ v iva	Evaluation	Examinations
CO 1	✓	1		1
CO 2	\checkmark	1		✓
CO 3	\checkmark	1		✓
CO 4	\checkmark	1		✓
CO 5	\checkmark	1		1
CO 6		1	1	